Мнемоническая диаграмма для Закона

Закон Ома - это... Что такое Закон Ома?

Закон Ома - это... Что такое Закон Ома?

Схема, иллюстрирующая три составляющие закона Ома

Закон Ома - это... Что такое Закон Ома?

Закон Ома - это... Что такое Закон Ома?

Диаграмма, помогающая запомнить закон Ома. Нужно закрыть искомую величину, и два других символа дадут формулу для её вычисления

Которое всего лишь позволяет вычислить (применительно к известному току, создающему на заданном участке цепи известное напряжение), сопротивление этого участка. Но математически корректное утверждение о том, что сопротивление проводника растёт прямо пропорционально приложенному к нему напряжению и обратно пропорционально пропускаемому через него току, физически ложно.

В специально оговорённых случаях сопротивление может зависеть от этих величин, но по умолчанию оно определяется лишь физическими и геометрическими параметрами проводника:

  • varrho ! — удельное сопротивление материала, из которого сделан проводник,
  • l! — его длина
  • s! — площадь его поперечного сечения

Закон Ома и ЛЭП

Одним из важнейших требований к линиям электропередач (ЛЭП) является уменьшение потерь при доставке энергии потребителю. Эти потери в настоящее время заключаются в нагреве проводов, то есть переходе энергии тока в тепловую энергию, за что ответственно омическое сопротивление проводов. Иными словами задача состоит в том, чтобы довести до потребителя как можно более значительную часть мощности источника тока = при минимальных потерях мощности в линии передачи = , где , причём на этот раз есть суммарное сопротивление проводов и внутреннего сопротивления генератора, (последнее всё же меньше сопротивления линии передач).

= (9)

Отсюда следует, что при постоянной передаваемой мощности её потери растут прямо пропорционально длине ЛЭП и обратно пропорционально квадрату ЭДС. Таким образом желательно всемерное её увеличение, что ограничивается электрической прочностью обмотки генератора. И повышать напряжение на входе линии следует уже после выхода тока из генератора, что для постоянного тока является проблемой.

Однако, для переменного тока эта задача много проще решается с помощью использования трансформаторов, что и предопределило повсеместное распространение ЛЭП на переменном токе. Однако при повышении напряжения в ней возникают потери на коронирование и возникают трудности с обеспечением надёжности изоляции от земной поверхности. Поэтому наибольшее, практически используемое, напряжение в дальних ЛЭП не превышает миллиона вольт.

Предлагаем ознакомиться  Семья. Состав семьи. Справка о составе семьи: образец

Кроме того, любой проводник, как показал Дж. Максвелл, при изменении силы тока в нём, излучает энергию в окружающее пространство, и потому ЛЭП ведёт себя как антенна, что заставляет в ряде случаев наряду с омическими потерями брать в расчёт и потери на излучение.

Классическая формулировка

Этот простой вариант трактовки, известный нам со школы.

Однородный открытый участок электроцепи
Однородный открытый участок электроцепи

То есть, поднимая напряжение, мы тем самым увеличиваем  ток. В то время, как увеличение такого параметра, как «R», ведет к снижению «I».  Естественно, что на рисунке сопротивление цепи показано одним элементом, хотя это может быть последовательное, параллельное (вплоть до произвольного)соединение нескольких проводников.

В дифференциальной форме закон мы приводить не будем, поскольку в таком виде он применяется, как правило, только в физике.

Трактовка для полной цепи будет несколько иной, чем для участка, поскольку в законе, составленном Омом, еще учитывает параметр «r», это сопротивление источника ЭДС. На рисунке ниже проиллюстрирована подобная схема.

Схема с подключенным с источником
Схема с подключенным с источником

Заметим, если «R» сделать равным 0, то появляется возможность рассчитать «I», возникающий во время короткого замыкания.

Собственно, падение напряжения характеризуется параметром «I*r». Это свойство характерно многим гальваническим источникам питания.

Закон Ома в дифференциальной форме

Сопротивление зависит как от материала, по которому течёт ток, так и от геометрических размеров проводника.

Полезно переписать закон Ома в так называемой дифференциальной форме, в которой зависимость от геометрических размеров исчезает, и тогда закон Ома описывает исключительно электропроводящие свойства материала. Для изотропных материалов имеем:

  • mathbf{j} — вектор плотности тока,
  • sigma! — удельная проводимость,
  • mathbf{E} — вектор напряжённости электрического поля.

Все величины, входящие в это уравнение, являются функциями координат и, в общем случае, времени. Если материал анизотропен, то направления векторов плотности тока и напряжённости могут не совпадать. В этом случае удельная проводимость является тензором ранга (1, 1).

Раздел физики, изучающий течение электрического тока в различных средах, называется электродинамикой сплошных сред.

Закон Ома для переменного тока

Вышеприведённые соображения о свойствах электрической цепи при использовании источника (генератора) с переменной во времени ЭДС остаются справедливыми. Специальному рассмотрению подлежит лишь учёт специфических свойств потребителя, приводящих к разновремённости достижения напряжением и током своих максимальных значений, то есть учёта фазового сдвига.

Предлагаем ознакомиться  Задолженность по квартплате при продаже квартиры

Если ток является синусоидальным с циклической частотой, а цепь содержит не только активные, но и реактивные компоненты (ёмкости, индуктивности), то закон Ома обобщается; величины, входящие в него, становятся комплексными:

  • U = Ueiωt — напряжение или разность потенциалов,
  • I — сила тока,
  • Z = Reiδ — комплексное сопротивление (импеданс),
  • R = (Ra2 Rr2)1/2 — полное сопротивление,
  • Rr = ωL − 1/(ωC) — реактивное сопротивление (разность индуктивного и емкостного),
  • Rа — активное (омическое) сопротивление, не зависящее от частоты,
  • δ = − arctg (Rr/Ra) — сдвиг фаз между напряжением и силой тока.

При этом переход от комплексных переменных в значениях тока и напряжения к действительным (измеряемым) значениям может быть произведён взятием действительной или мнимой части (но во всех элементах цепи одной и той же!) комплексных значений этих величин. Соответственно, обратный переход строится для, к примеру, подбором такой что Тогда все значения токов и напряжений в схеме надо считать как

Если ток изменяется во времени, но не является синусоидальным (и даже периодическим), то его можно представить как сумму синусоидальных Фурье-компонент. Для линейных цепей можно считать компоненты фурье-разложения тока действующими независимо.

Также необходимо отметить, что закон Ома является лишь простейшим приближением для описания зависимости тока от разности потенциалов и от сопротивления и для некоторых структур справедлив лишь в узком диапазоне значений. Для описания более сложных (нелинейных) систем, когда зависимостью сопротивления от силы тока нельзя пренебречь, принято обсуждать вольт-амперную характеристику.

Где «Z» представляет  собой импеданс, это комплексная величина, состоящая из активного (R) и пассивного (Х) сопротивлений.

Трактовка закона Ома

Здесь:

  • ! sigma — электрическая удельная проводимость
  • ! n — концентрация электронов
  • ! e_0 — элементарный заряд
  • ! tau — время релаксации по импульсам (время, за которое электрон «забывает» о том в какую сторону двигался)
  • ! m — эффективная масса электрона

Законы постоянного тока. Формулы

Под таким типом подразумевается участок, где помимо электрического заряда производится воздействие других сил. Изображение такого участка показано на рисунке ниже.

Схема неоднородного участка
Схема неоднородного участка

Разные точки цепи обладают неизменным по времени электрическим полем, исходя из основных законов постоянного тока. То есть в такой цепи оно ассоциируется с замороженным электростатическим полем. Когда электрический заряд перемещается по замкнутой траектории, то работа сил равняется нулю.

Определение 5

Чтобы постоянный ток имел место на существование, нужно наличие такого устройства в цепи, которое будет создавать и поддерживать разности потенциалов разных участков цепи при помощи работы сил неэлектростатического происхождения. Их называют источниками постоянного тока. Такие силы, действующие на свободные носители заряда со стороны источников тока, получили название сторонних сил.

Их природа различна. Гальванические элементы или аккумуляторы обладают сторонними силами, возникающими по причине электрохимических процессов. В генераторах это обстоит по-другому: появление сторонних сил возможно при движении проводников в магнитном поле. Источник тока сравним с насосом, перекачивающим жидкость замкнутой гидравлической системы.

Перемещаясь по цепи постоянного тока, электрические заряды сторонних сил действуют на источники тока, то есть совершают работу.

Определение 6

Физическую величину, равную отношению сторонних сил Aст при перемещении заряда q от отрицательного полюса источника к положительной величине этого заряда, называют электродвижущей силой источника (ЭДС):

ЭДС=δ=Aстq.

Отсюда следует, что ЭДС определяется совершаемой сторонними силами работой при перемещении единичного положительного заряда. ЭДС измеряется в вольтах (В).

Предлагаем ознакомиться  Взыскание ущерба с виновника ДТП в 2020 году

Если по замкнутой цепи движется единично положительный разряд, то работа сторонних сил равняется сумме ЭДС, которая действует в данной цепи с работой электростатического поля, имеющего значение 0.

Определение 7

Цепь с постоянной величиной тока следует разбивать на участки. Если на них отсутствует действие сторонних сил, тогда участки называют однородными, если присутствуют, то неоднородными.

U12=φ1-φ2 δ12.

U12=φ1-φ2.

В 1826 году Г. Ом с помощью эксперимента установил, что сила тока I, текущая по однородному металлическому проводнику (отсутствие действия сторонних сил), пропорциональна напряжению на U концах проводника.

I=1RU или RI=U, где R=const.

Определение 8

R называют электрическим сопротивлением.

Проводник, имеющий электрическое сопротивление, получил название резистора.

Связь между R и I говорит о формулировке законе Ома для однородного участка цепи: сила тока в проводнике прямо пропорциональна приложенному напряжению и обратно пропорциональна сопротивлению.

Обозначение сопротивления по системе СИ выражается омами (Ом).

Если на участке цепи имеется сопротивление в 1 Ом, тогда при напряжении 1 В во время измерения возникает ток силой 1 А.

{I= dfrac{U}{R}}, где I — сила тока, U — напряжение, R — сопротивление.

Найти силу тока

Найти силу тока закон Ома

{I= dfrac{U}{R}}

Найти напряжение

Найти напряжение закон Ома

{U= I cdot R}

Закон Ома - это... Что такое Закон Ома?

{U= I cdot R}, где U — напряжение, I — сила тока, R — сопротивление.

Найти сопротивление

Найти сопротивление закон Ома

{R= dfrac{U}{I}}

{R= dfrac{U}{I}}, где R — сопротивление, U — напряжение, I — сила тока.

Просмотров страницы: 7067

Вывод

Как уже упоминалось в начале статьи, вся прикладная электротехника базируется на законе, составленном Омом. Незнание этого базового догмата может привести к неправильному расчету, который, в свою очередь, станет причиной аварии.

Подготовка электриков как специалистов начинается с изучения теоретических основ электротехники. И первое, что они должны запомнить – это закон составленный Омом, поскольку на его основе производятся практически все расчеты параметров электрических цепей различного назначения.

Понимание основного закона электротехники поможет лучше разбираться в работе электрооборудования и его основных компонентов. Это положительно отразится на техническом обслуживании в процессе эксплуатации.

Самостоятельная проверка, разработка, а также опытное изучение узлов оборудования – все это существенно упрощается, если использовать закон Ома для участка цепи. При этом не требуется проводить всех измерений, достаточно снять некоторые параметры и, проведя несложные расчеты, получить необходимые значения.